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Summary. It is well known that truncation selection is 
the most efficient form of directional selection in terms of 
changing gene frequency. In this paper we show circum- 
stances where truncation selection followed by a bal- 
anced mating generates inbreeding effective population 
size smaller than that generated by a selection that 
assigns mating frequencies to individuals according to 
their breeding values, where both selection schemes give 
the same expected performance of selected individuals 
(selection differential). Breeding values of selected in- 
dividuals and the weight used to determine mating fre- 
quencies are assumed to be linearly distributed on a per- 
formance scales, x. To assign mating frequencies to the 
individuals in the weighting system, the selected indi- 
viduals are grouped using a constant 6, and i th group in 
the interval xl, xi + 6. With small number of groups, say 
2 or 3, the weighting system in general generates inbreed- 
ing effective population size that is larger than that 
generated by a truncation selection. As the number of the 
groups increases, truncation selection generates larger 
effective numbers. 

Key words: Inbreeding effective population size - Trunca- 
tion selection - Weighting system 

Introduction 

Effective population size concept (Wright 1931) evolved 
as a means of relating observed numbers and population 
properties such as increase of homozygosis or the change 
in gene frequency due to small population size (Crow 
1954; Kimura and Crow 1963). Instead of observed num- 
bers, expected contribution of fuil-sib families or individ- 
uals to the gene pool of the progeny population can be 

used to determine the effective population size (Robert- 
son 1961). 

In most cases two well known population sizes, in- 
breeding and variance effective population size (Crow 
1954), yield similar results. However, they deal with dif- 
ferent reference populations. The inbreeding effective 
population size deals with the parent (or grandparent) 
population, while the variance effective population size is 
directly related to the number in the progeny population 
(Kimura and Crow 1963). This distinction is useful in 
deciding on the effective number to be used in different 
situations. 

In selective breeding the determination of the vari- 
ance effective number usually involves describing a com- 
plete cycle of selection with reference points at the time of 
reproduction. Therefore, the effective number is primarily 
useful in learning the impact of small breeding popula- 
tion size on multiple-generation selective breeding or 
studies of selection limits. Inbreeding effective population 
size does not require describing a complete cycle of selec- 
tive breeding because reference is made to the parent 
population. Therefore, the number can be applied in mul- 
tiplication activities following a selective breeding cycle 
as well as in a multiple-generation selection. For example, 
in forestry, seed orchards are widely used to produce 
seeds to be used in commercial planting programs. In- 
breeding effective population size of the trees in the seed 
orchard can be useful guide to predicting the expected 
inbreeding level of the seeds collected. In this case, the 
actual size of the progeny population is not the critical 
component in determining the effective number. The in- 
breeding effective population size used in this paper deals 
with situations similar to the seed orchard example. 

The term "selective breeding cycle" as used here rep- 
resents a combined action of selection and mating the 
selected individuals. When developing selection tech- 
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niques breeders frequently assume that random or struc- 
tured random mating will follow, where structured ran- 
dom mating refers to artificially organized matings with 
random components (Harris et al. 1984). This assumption 
is equivalent to saying that the fertility of selected indi- 
viduals is independent of the selected trait. Recently, 
Lindgren (1986) suggested assigning a mating frequency 
weight to an individual according to its performance 
or breeding value to further increase genetic gain. This 
approach amounts to a two-stage selection: truncation 
selection followed by fertility selection, where fertility is a 
function of the performance of breeding value. However, 
the genetic gain can be increased by simply increasing the 
selection differential in truncation selection followed by 
a balanced structured random mating. The issue, there- 
fore is Which selection-breeding combination generates 
greater gain. 

Other authors have addressed an equivalent question 
by relating selection differential (I), selection coefficient 
(s), and average excess of a gene (a) (Milkman 1978, 
Kimura and Crow 1978, Crow and Kimura 1979). While 
discussing the relation s = i a widely used by Griffing 
(1960), Milkman (1978) offered a qualitative explanation 
as to why truncation selection is the most efficient form 
of rank-order selection for fixed w, where w represents the 
mean fitness of the population after selection. He stated 
that "to modify truncation selection while keeping w con- 
stant, it is necessary to transfer some reproduction from 
individuals of a higher rank to those of lower rank". 
Crow and Kimura (1979) quantitatively showed that 
truncation selection is the most efficient form of direc- 
tional selection in changing gene frequency for a given 
effect of the gene on the character. They showed that for 
a given 's/a' truncation selection yields smaller T than 
other selections. This could be rephrased as saying that 
for a given T and 'a', truncation selection yields larger s 
than other selection schemes. 

Instead of s, it is possible to use inbreeding effective 
population size to compare different selection schemes. 
The objective of this paper is to present situations where 
truncation selection generates smaller inbreeding effec- 
tive population size than other selective breeding 
schemes for a given selection differential. 

Inbreeding effective population size 

We will use Robertson's (1961) definition of effective 
population size, 

Ne = (E Ui) 2 
u? ' (I) 

where u~ represents the expected contribution of i th full- 
sib group o r  i m individual. Although Robertson derived 
the formula as a variance effective number, Kimura and 

Crow (1963) showed that the same formula can be used 
for inbreeding effective number. They noted that the a 
priori probability that two randomly chosen gametes are 
produced by the same parent (1/Ne) is E i k2/(Zi ki) z where 
k i represents the expected size of a progeny group. If 
observed number h i was used, the probability would be 
Ei hl (hi - I)/N h (N h - 1), where N represents the num- 
ber of parents and h represents the mean family size. 
Resulting inbreeding effective numbers of monoecious 
species are: 

N k  
using expected numbers, (2 a) 

k + VJk  

N e  = 

N h - 1  
using observed numbers, (2 b) 

h - 1 + Vh/h 

where V represents the variance of the family size. Equa- 
tion (2 b) is discussed by Kimura and Crow (1963). The 
most important property of Equation (2 a) is that Ne is 
always less than or equal to N. Equality is obtained when 
the progeny family size is constant (V k = 0). On the other 
hand, when Vh = 0, Ne in Equation (2b) becomes 
2 N - 1 under constant population size over generation 
(h = 2) and approaches infinity as h approaches 1. There- 
fore, the properties of the inbreeding effective population 
size as used here are different from those of the traditional 
definition (2 b). 

Expression (1) is obtained by replacing k, in the defini- 
tion of the a priori probability [1/Ne = E i k?,/(Xi ki) 2] with 
uiT, where T represents the expected total progeny 
number (= Zi ki), which drops out in the expression. 

Noting Ei ul = 1, 

Ne = 1/E i u 2 . (3) 

This definition of Ne, along with the property that 
Ne < N, implies that any selection scheme that generates 
differences in the expected size of progeny groups will 
reduce the inbreeding effective number, even if all N indi- 
viduals are involved in producing the progeny popula- 
tion. 

Model and assumption 

Suppose N monoecious individuals are selected accord- 
ing to truncation selection, and S represents the expected 
performance of the selected individuals. If the breeder 
wishes to increase S by increasing the gametic contribu- 
tion of the individuals with higher performance, then the 
inbreeding effective number (Nw) will be less than N, 
while the expected performance is increased, say from S 
to S*. Alternatively, the breeder could define a new trun- 
cation point that corresponds to S*. This will also result 



in a smaller number of selected individuals (Nt )  than N. 
If the new set of individuals contributes equally to the 
following generation, then N t becomes the inbreeding 
effective number under the new truncation selection. For  
breeders who are willing to accept a smaller Ne to achieve 
S*, the question is whether the same S* should be ob- 
tained by simply truncating at a lower N t ,  o r  if the un- 
balanced mating of N individuals (resulting in Nw) can 
achieve equivalent results. Thus, if we can find N w > N t 

for a given S*, then there are unbalanced mating systems 
that are in this sense "better" than merely increasing the 
truncation level. 

In this paper, the term "truncation selection" will be 
used to represent a truncation selection where all selected 
members have equal probability of contributing to the 
progeny population. The alternative form of selection, 
where the degree of contribution of selected parents to 
the progeny population varies according to their perfor- 
mance (or breeding value), will be referred to as the 
"weighting system". 

Let f(x) represent the frequency distribution of the 
breeding value of individuals that fall between the initial 
truncation point m and a value M > m, where M is the 
largest breeding value of the sampled individuals, and 
M 

f(x) dx = C. Without loss of generality, we can let 
m 

C = 1. Also, let g (x) represent a function that determines 
the mating contribution of a selected individual with 
breeding value x to the progeny population. 

We assume that the breeder may either not wish, or 
be able to estimate exactly an individual's true breeding 
value, x~, but can assign an individual to a group in an 
interval of length 6. Within each group the individuals 
would have equal gametic representation, but the group's 
contribution would be determined by a weight q~, which 
is a function of g (x). The interval length is determined by 
the breeder. We envision this model to be applicable to 
many actual breeding situations, specifically to designing 
seed orchards in forest tree breeding. We assume that the 
selected individuals are grouped using a constant 6, and 
t h e  i th group in the interval x~, xl + 6, and; 

xi+~ xi+t~ 

p~= ~ f(t)dt, q , =  ~ g ( t )d t ,  
xi xi 

Z i p  i ----- Ziq i ---- 1, and N i = Np~, 

where 

Pl = the fraction of individuals falling between xl and 
X i+6 ,  

q~ = the weight assigned to the individuals from i th 
group, 

N~ = the expected number of individuals in the i 'h 
group, 

x i = m, 
XK+I---- M, 
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6 = (M - m)/K = d/K, and 
K = number of groups. 

The weight ql may be viewed as the frequency of 
sampling an individual from i th group with replacement. 
Therefore, if a total of N* individuals are to be sampled 
from the pool of N selected individuals, the expected 
number of samples from i th group is N* q~. The probabil- 
ity that a particular individual to be sampled given i th 

group is 1/Ni. If the N* samples contribute equally to the 
progeny gene pool, then the expected contribution of j  th 
individual from i th group to the following generation is 

Uij = q i / N i  . 

Because individuals in the same group have the same 
expected contribution, u~j -- U~k, we will use N i ui in place 
of Zj u 0 . 

By replacing u ij in (3), the effective population size is, 

N w = 1/Eij u2j 

= 1/~" i Ni u 2 = N/Ei (qiZ/pi). (4) 

The expected performance of the new sample is 

S *  = •i xi Ni ui 

= z~i ui qi, where 

x t + J  

~ i =  S t f ( t )d t .  
x i  

(5) 

Given S*, we need to search for a new truncation point 
m*, which satisfies 

M 
S * =  Stf ( t )  dt, and m * > m .  

111" 

The expected number of individuals included in the selec- 
tion with m* as the truncation point is 

M 

N t = N i f(t) dt.  
m* 

Because all Nt individuals contribute equally to the prog- 
eny population gene pool, N t is the effective population 
size. Given N t and N w, we can determine conditions 
which satisfy 

0 = Nt/N w < 1. 

Where both f and 9 are linear functions of x 

As an approximation of a truncated normal and other 
distributions, breeding values of the individuals in the 
parental population are assumed to be distributed ac- 
cording to a linear function f(x). f(x) is, however, defined 
between m and M, and x does not include any value less 
than the point corresponding to the apex of the distribu- 
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Fig. 1. f and g as linear functions of x, where x represents the 
performance scale, f(x) and g(x) are defined in [0, d] or [m, M] 

t ion  (Fig. 1). To simplify the expression further wi thout  
loss of generality,  we will replace m and  M with 0 and  d, 
respectively. Then,  

f(x) = 2 ( d -  x)/d 2, an d  

g(x) = 2 ( x  - y d)/d2 (1 - 2y) ,  

where y = z/d, an d  z is the intersect ion of g (x) with the 
x axis. 

We also ob ta in  

xi+df 
P i = ( 2 / d 2 )  ~ ( d - t )  dt  

xi 

= [2(K - i) + 1]/K 2 

xi+~ 
q i = [ 2 / 4  2 ( 1 - 2 y ) ]  ~ ( t - y d )  dt 

xt 

= (2i - v ) /K:  (1 - 2y) ,  

where 

v = 1 + 2 K y ,  and  y < 1 / 2 K  or y > ( 2 K - 1 ) / 2 K .  

If 1/2 K < y > (2 K - 1)/2 K, then  at least one qi < 0, 
mean ing  that  at least one group  will no t  be inc luded in 
the mat ing.  

F r o m  (4), the effective popu la t ion  size unde r  this 
scheme is (Appendix), 

Nw = N/ZI (qi2/p,) 

= N/~:i [(2i -- v)/K2 (1 - 2 y)12/K2 [2(K - i) + 1] 

= N/{1 + 4 (Q  - 1)[(1 - y)/(1 - 2y)] z} (6) 

where Q = Zi 1/(2i - 1), which is a cons tan t  for given K. 
F r o m  (5), the expected performance  of the weighted 

samples is (Appendix), 

S* -- Z~(2i - v)[(i - 1 /2)5 - ei]/K2 (1 - 2y)  

= [d/(1 - 2 y)] [2/3 - y - (1 - y) Q/3 K 2] (7) 

where el = xl - (xi + 5/2). 

Given  S*, we can search for a new t runca t ion  poin t  
m*. W h e n  f(x) is a l inear  funct ion  of x, 

S* = m* + d*/3 

-- 2 m*/3 + d/3, (8) 

where m* is the new t runca t ion  poin t  and  d* = M - m*. 
Us ing  (7) and  (8), 

m* = 3 [d/(l + 2y)] [2/3 - y - (1 - y) Q/3 K2]/2 - d/2 

= Rd /2 (1  - 2y), 

where R = (1 - y ) (K 2 - Q) /K  2. 

G iven  the new t runca t ion  point ,  we can  determine the 
expected n u m b e r  of indiv iduals  (Nt) with values greater 
t han  or equal  to x* .  

N, = N [1 - (2 d m* - m*2)/d 21 

= N{1  - R/(1 - 2y)  + [R/(1 - 2 y)]2/4} 

= N [1 - R/2 (1 - 2 y)]Z 

= N [1 - (1 - y) (K 2 - Q)/2 K 2 (1 - 2 y)]2. 

In  this case all the individuals  have the same probabi l i ty  
of con t r ibu t ing  to the fol lowing generat ion,  and  Nt is the 
desired effective popu la t i on  size. 

The final pa ramete r  of interest  is the rat io between N t 

and  Nw. 

0 (K, y) = Y t / Y  w 

= [1 - (1 - y) (K 2 - Q)/2 K 2 (1 - 2 y)]2 

�9 {1 + 4 (Q  - 1)[(1 - y)/(1 - 2y)] 2} (9) 

We will analyze Equa t ion  (9) by look ing  for a d o m a i n  
of y tha t  results in  0 < 1 for given K. This  can  be done  by 
de te rmin ing  the roots  of 0 - 1 = 0, which is a quar t ic  
funct ion  of s = (1 - y)/(1 - 2 y). I t  is apparen t  that  s = 0 
(i.e. when  y = 1) is a roo t  of the equat ion.  W h e n  y = 1 
then  f(x) = g(x). The quart ic  equa t ion  0 - 1 = 0 then  
reduces to a cubic equa t ion  

s 3 - -  (2/a) s z + [(a z + b)/a 2 b] s - 2 / a b  = 0,  (10) 

where a = (k 2 - Q ) / 2 K  2 and  b = 4 (Q  - 1). 

The three roots  of E q u a t i o n  (10), in terms of y, are 
shown for K values between 2 and  20, and  at 200 in 
Table 1. F igure  2 shows the range  of y values where 0 < 1 
for K values between 2 and  10. It  is apparen t  from the 
results that  0 is s t rongly inf luenced by the n u m b e r  of 
groups.  W h e n  K = 2 or 3, 0 < 1 exists for bo th  posit ive 
and  negative values of y. W h e n  y is posit ive the inter-  
section of g with x (i.e. z) is located on  the positive side of 
the x axis (for example,  gl  (x) in Fig. 1). Star t ing K = 4, 
0 < 1 exists on ly  for positive y values�9 Star t ing K ' =  5, the 
d o m a i n  of y becomes subs tant ia l ly  smaller�9 F igure  3 
shows 0 between y = 1 and  y = 2. It  tu rns  ou t  that  the 
m i n i m u m  exists in this range for all K values, and  the 
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min imum 0 of all the groups is 0.907 at y = 1.873 for 
K = 2 .  

Discussion 

The above example dear ly shows circumstances where 
t runcat ion selection on a populat ion with linearly dis- 
tributed breeding values produces a smaller inbreeding 
effective populat ion size than a linear weighting of mating 
frequencies combined with groupings. The surprising 
part, however, is that 0 is highly dependent on the num- 
ber of groups. Under  the linear assumption of f(x) and 

/ r  

�9 / , r  m 2 [ 

I t 

- - 1 5  - - ' I 0  - - 5  O 

g(x), and given y, the S* tends to be smaller when the 
number  of groups is small. As the number  of groups 

increases, S* eventually converges to (2/3 - y) d/(1 - 2 y). 
On the other hand, the effective populat ion size (Nw) 
decreases as the number  of groups increases. Therefore 
grouping itself can be viewed as a technique to be consid- 
ered in breeding. However, the min imum value 0 can take 
(0.907) is not overwhelming, and the result does not stand 
on its own as a new technique to be used. Its practical 

y - -  z / d  

Fig. 2. Region ofy where 0 < 1 for different number of groups (K) 

Table 1. Roots, in terms of y, of 0 - 1  = 0. K =  number of 
groups 

K Root  1 Root  2 Root  3 

2 0.4215 -0.2965 0.2500 
3 0.3982 -1.8263 0.1707 

-- a o  4 0.3874 12.2248 0.1746 
- -  9 5 0.3814 3.1383 0.1851 
- -  e 6 0.3777 2.2633 0.1946 

7 0.3750 1.9317 0.2025 
-- 7 8 0.3731 1.7565 0.2089 

.] ~ -- 8 9 0.3717 1.6475 0.2143 
10 0.3705 1.5730 0.2188 

- -  5 , 11 0.3696 1.5186 0.2226 
/ r  4 [ 12 0.3689 1.4769 0.2260 

-- s , 13 0.3682 1.4440 0.2289 
- -  a , 14 0.3677 1.4172 0.2315 

15 0.3672 1.3949 0.2338 
16 0.3667 1.3761 0.2359 

I t , 
17 0.3664 1.3599 0.2378 

5 a o  z 5  18 0.3660 1.3458 0.2395 
19 0.3657 1.3335 0.2410 
20 0.3655 1.3226 0.2425 

200 0.3587 1.1295 0.2784 

f . 2  

1.18 

1.16 

1.14 

1.12 

1.1 

1.08 

1.06 

1.04 

1.02 

I 

O. 98 

O. 96 

O. 94 

O. 92 

0.9 

J K  ~ 2 0 0  

q 

K ~ ~ 0  

K = 4 

K ~ S 

I i I i I I I i i 

I 1.2 1.4 1.6 1.8 2 

y - -  = / d  

Fig. 3. 0 between y = 1 and y = 2 for different number  of  groups  (K) 
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value  has  to be j u d g e d  in con junc t ion  with  o ther  factors  
inf luencing the breeder ' s  decisions.  

The  a s sumpt ion  tha t  f(x) is a l inear  funct ion of x is 
used to m a k e  this analysis  possible.  However ,  this  ana ly-  
sis was m a d e  on ind iv idua ls  wi th  ex t reme values,  and  a 
l inear  a p p r o x i m a t i o n  could  be as good  as or  be t te r  t han  
n o r m a l  a p p r o x i m a t i o n  at  tha t  range. 

We have  numer ica l ly  examined  (Kang,  in p r epa ra -  
tion) the mode l  under  n o r m a l  d i s t r ibu t ion  and  different 
weight ing schemes. The  results  are  different t han  those  
found  under  a l inear  model ,  bu t  the ma in  conclus ion  tha t  
select ion schemes o ther  than  t runca t ion  can  genera te  a 
grea ter  inbreed ing  effective p o p u l a t i o n  size for a given S* 
remains.  We also found some o ther  weight ing schemes 
tha t  cou ld  genera te  the ra t io  0 smal ler  t han  those  found  
in this  analysis.  

N o  a t t emp t  has  been m a d e  to  relate  the inbreed ing  
effective p o p u l a t i o n  size found  here with the var iance  
effective p o p u l a t i o n  size of R o b e r t s o n  (1961). 

The  n u m b e r  str ict ly deals  wi th  pa ren ta l  p o p u l a t i o n  
size wi thou t  any  regard  to the p rogeny  p o p u l a t i o n  size. 
W h e n  expec ta t ion  ins tead  of observed  values is used, 
the var iance  and  inbreed ing  effective size are ident ica l  
( K i m u r a  and  Crow 1983). However ,  to t rans la te  the cur-  
rent  f inding to var iance  effective p o p u l a t i o n  size, the de- 
scr ip t ion  of a comple te  cycle of  select ion is necessary.  

C o n t r a r y  to the s t rong  general ized s t a tement  poss ible  
on  the super ior i ty  of t r unca t ion  select ion in changing  
gene frequencies ( K i m u r a  and  Crow 1978; C row and  
K i m u r a  1979), the s t a tement  on the influence of different 
select ion me th o d s  on  inbreed ing  effective p o p u l a t i o n  size 
is much  more  restrictive. U n d e r  the l inear  d i s t r ibu t ion  
of f, we are able  to  say tha t  wi th  smal l  n u m b e r  of groups ,  
say 2 or  3, the l inear  weight ing sys tem in genera l  gener-  
ates inbreed ing  effective p o p u l a t i o n  size la rger  than  tha t  
genera ted  by  a t r unca t ion  select ion tha t  has  the same S*. 
As the n u m b e r  of g roups  increases,  t runca t ion  select ion 
generates  larger  effective numbers .  However ,  the f inding 
tha t  depend ing  on the c i rcumstance ,  a l ternat ives  more  
des i rable  than  t runca t ion  select ion exist, is s ignif icant  
because  it necessi tates  the use of the cond i t ion  under  
which t runca t ion  select ion is the mos t  efficient form of 
d i rec t iona l  selection. 

A p p e n d i x  

Derivation of equation (6) 

Nw = N/2~i (qi2/pl) 

Ei(qg/pi) 

= E~[(2i - v)/K2 (1 - 2 y)12/{1/[2(K - i) + 1]} 

= [1/(1 - 2y)  2] E~(2i - v)2/{K2 [2(K - i) + 1]} 

By replac ing  i wi th  K + 1 - i, we get 

S~(q2/pi) 

= [1/(1 - 2y)  2] E~[2K(1  - y) - (2i  --  1)]2/[K2(2i - 1)] 

= [1/(1 - 2y)2][4(1 - y)2 Q _ 3 + 4 y ] ,  

where Q = E i [ 1 / ( 2 i -  1)] 

= [1/(1 - 2y)2][(1 - 2y)  2 + 4 ( Q  - 1)(1 - y)2] 

= 1 + 4 ( Q  - 1)[(1 - y)/(1 - 2y)] 2 

Nw = N/{1 + 4 ( Q  - 1)[(1 - y)/(1 - 2y)]2}.  

Derivation of equation (7) 

S* = S i q i x l  = El ql [(i - 1/2) fi --  ei], 

where  e i = x i - ( x i + 3 / 2 )  

= z~i qi(i  - 1/2)6 - ~ ' i q i s  

S* -1- z~ i qi/;i 

= [6/K2 (1 - 2y)] Z i ( 2 i  - v)(i - 1/2) 

= [6/K2 (1 --  2 y ) ] [ 2 K ( K  + 1 ) ( 2 K  + 1)/6 

- K ( K  + 1)(1 + v)/2 + v K / 2 ]  

= [6/6 K 2 (1 - -  2 y)] [4 K 3 + 3 K 2 (1 - v) - K] 

~i = R~ - (x~ + 3/2) = 6/6 [2 (K - i) + 1], 

~ i  ql el = Z~ [6/6 K 2 (1 - 2 y)] (2 i - v)/[2 ( K  - i) + 1] 

= [6 /6K2(1  - 2y)] E~(2i - v) / [2(K - i) + 1]. 

By replac ing  i wi th  K + I - i, and  simplifying,  

= [3/6 K 2 (1 - 2 y)] Z~ [2 K (1 - y) - (2 i - 1)]/(2 i - 1) 

= [3/6 K 2 (1 - 2 Y)] [2 K (1 - y) O - K] 

= [(1 - y) Q / 3 K ( 1  - 2 y ) -  1 / 6 K ( 1  - 2y)] 6 

S* = {[4K 3 + 3K2(1  - v ) -  K ] / 6 K 2 ( 1  - 2y)  

- (1 - y) Q / 3 K ( I  - 2 y )  + 1 / 6 K ( 1  - 2 y ) }  6 

= [d/(1 - 2 y)] [2/3 - y - (1 - y) Q/3  K2] .  
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